Riesz Bases in Sobolev Spaces 1792 Hb

نویسنده

  • Rudolf Lorenz
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

Riesz bases of wavelets and applications to numerical solutions of elliptic equations

We investigate Riesz bases of wavelets in Sobolev spaces and their applications to numerical solutions of the biharmonic equation and general elliptic equations of fourth-order. First, we study bicubic splines on the unit square with homogeneous boundary conditions. The approximation properties of these cubic splines are established and applied to convergence analysis of the finite element meth...

متن کامل

Construction of multivariate compactly supported prewavelets in L2 space and pre-Riesz bases in Sobolev spaces

We give a new constructive method for finding compactly supported prewavelets in L2 spaces in the multivariate setting. This method works for any dimensional space. When this method is generalized to the Sobolev space setting, it produces a pre-Riesz basis for Hs(IR) which can be useful for applications. AMS(MOS) Subject Classifications: Primary 42C15, Secondary 42C30

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

On the stability of Powell–Sabin Wavelets

Recently we developed multiscale spaces of C piecewise quadratic polynomials relative to arbitrary polygonal domains Ω ⊂ R. These multiscale bases are weakly stable with respect to the L2 norm. In this paper we show that these bases form strongly stable Riesz bases for the Sobolev spaces Hs(Ω) with s ∈ (2, 5 2 ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998